
CORAL: Solving Complex Constraints forCORAL: Solving Complex Constraints for

Symbolic PathFinder

Matheus Souza,

Mateus Borges, Corina PasareanuMateus Borges,

Marcelo d’Amorim*

Corina Pasareanu

Federal University of Pernambuco

Recife-PE, Brazil

CMU SV/NASA Ames Research Center

Moffet Field-CA, USA

* presenter

Context and Problem

• Context

– Symbolic execution (SE)

• Problem

Program analysis technique to

generate test input data for

achieving high path coverage.

• Problem

foo(int x) {
x = x + 1;
if (x > 10) {

// …
} else {

// …

foo(?)
foo(?)

// …
}

}

Context and Problem

• Context

– Symbolic execution (SE)

• Problem

Program analysis technique to

generate test input data for

achieving high path coverage.

• Problem

foo(int x) {
x = x + 1;
if (x > 10) {

// PC: $x + 1 > 10
} else {

// PC: $x + 1 <= 10executes program
PC: $x + 1 > 10

explores all program

paths (up to bounds)

Execution

engine

foo($x)
foo(?)
foo(?)

// PC: $x + 1 <= 10
}

}

executes program

with symbolic input

PC: $x + 1 > 10
PC: $x + 1 <= 10

Context and Problem

• Context

– Symbolic execution (SE)

• Problem

Program analysis technique to

generate test input data for

achieving high path coverage.

• Problem

PC: $x + 1 > 10
generates

explores all program

paths (up to bounds)
foo(int x) {

x = x + 1;
if (x > 10) {

// PC: $x + 1 > 10
} else {

// PC: $x + 1 <= 10executes program

Execution

engine

foo($x)

Solver
foo(10)
foo(0)

PC: $x + 1 > 10
PC: $x + 1 <= 10

generates

concrete inputs

// PC: $x + 1 <= 10
}

}

executes program

with symbolic input

Context and Problem

• Context

– Symbolic execution (SE)

• Problem• Problem

– Inability of solvers to deal with complex constraints

foo(double x) {
x = x + 1;
if (x > Math.pow(Math.sin(x),2)){

// PC: $x + 1>($x + 1)^2
} else {

// PC: $x + 1<=($x + 1)^2
PC: $x + 1 > sin($x + 1)^2

undecidable or computationally

complex solving

// PC: $x + 1<=($x + 1)^2
}

}

Execution

engine

foo($x)

Solver
foo(?)
foo(?)

PC: $x + 1 <= sin($x + 1)^2

Context and Problem

• Context

– Symbolic execution (SE)

• Problem

Program analysis technique to

generate test input data for

achieving high path coverage.

• Problem

– Inability of solvers to deal with complex constraints
Implemented in

Symbolic PathFinder

(SPF) and used at NASA

and Fujitsu.

Note about SPF

• Model-level interpretation of calls to math functions

sin$x + 1 sin($x + 1)

Symbolic expression denoting

the result value of the callthe result value of the call

CORAL solvers

• Target applications: SE of programs

that manipulate floating-point variables

– Use floating-point arithmetic– Use floating-point arithmetic

– Call specific math functions

(from java.lang.Math)
Common in software

from NASA.

Solver
sqrt(exp(x+z))) < pow(z, x),
x>0, y>1, z>1, y<x+2,
w=x+2

{x=4.31, y=6.08,
z=9.51, w=6.31}

Summary about CORAL

• Meta-heuristic solver

– Distance-based fitness function

• Optimizations• Optimizations

– Identification of dependent variables

– Inference of variable domains

– Efficient evaluation of constraints

Quick outlook on heuristic search

Input: sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

Solution: ?

4.81 1.00 1.00

4.81 1.00 2.19

2.91 20.2 9.99

Individuals

2
3

4

Individuals

4.31 6.08 9.51

-
-

- …

1.91 28.2 1.99

Identify best fit

individuals

4 -

create new

generations

stop after num.

iterations or

solution found

Particle swarm optimization (PSO)

• Similar to GA, but with fixed-sized population

– Search simulates movements in a group of animals

• Implemented very efficiently (matrix operations)• Implemented very efficiently (matrix operations)

• Parameters to calibrate local and global influence

• Used opt4j library (see opt4j.sourceforge.net)

Fitness Function

fconstraint

candidate input vector
4

Fitness value

indicates quality of a

solution.

b1 and … and (bi1 or … or bim) and … and bn1.91 28.2 1.99

sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

Fitness Function

fconstraint

candidate input vector
4

Fitness value

indicates quality of a

solution.

b1 and … and (bi1 or … or bim) and … and bn1.91 28.2 1.99

sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

Adapted SAW [T. Back et al., 1998]

Fitness Function

fconstraint

candidate input vector
4

Fitness value

indicates quality of a

solution.gi proportional to

distance to the

b1 and … and (bi1 or … or bim) and … and bn1.91 28.2 1.99

sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

distance to the

clause i solution.

Adapted SAW [T. Back et al., 1998]

Fitness Function

fconstraint

candidate input vector
4

Fitness value

indicates quality of a

solution.Each clause i has

an independent

b1 and … and (bi1 or … or bim) and … and bn1.91 28.2 1.99

sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

an independent

weight.

Adapted SAW [T. Back et al., 1998]

RESULTSRESULTS

Evaluation

• Impact of search algorithm and optimization

• Effectiveness to solve…

– simple constraints– simple constraints

– complex constraints

• NASA case studies

– PISCES

– Apollo Lunar Autopilot

Impact of search and optimizations

• Comparison of 4 variations of CORAL

– {PSO,Random} x {optimized, non-optimized}

pso-opt pso random-opt random

pso-opt 74 88 257

pso 13 - 71 196

random-opt 3 47 - 180

random 0 0 8 -

Number of constraints that

solver on row 4 solved and

solver on column 3 did not solve

Impact of search and optimizations

• Comparison of 4 variations of CORAL

– {PSO,Random} x {optimized, non-optimized}

pso-opt pso random-opt random

pso-opt 74 88 257

pso 13 - 71 196

random-opt 3 47 - 180

random 0 0 8 -

optimization pays off on average

Impact of search and optimizations

• Comparison of 4 variations of CORAL

– {PSO,Random} x {optimized, non-optimized}

pso-opt pso random-opt random

pso-opt 74 88 257

pso 13 - 71 196

random-opt 3 47 - 180

random 0 0 8 -

pso-opt performs better on average

Effectiveness on simple constraints

• Constraints involving decidable theories

– Bounded-exhaustive testing of BST and Treemap

• Compared CORAL with Choco, CVC3, and Yices• Compared CORAL with Choco, CVC3, and Yices

CORAL could solve as many constraints as any other.

Effectiveness on complex constraints

• 78 manually-written test cases with math functions

• Compared CORAL with Choco

• CORAL solved 92.3% of the constraints (707/766)• CORAL solved 92.3% of the constraints (707/766)

For no query CHOCO could solve and CORAL could not.

PISCES

• PISCES library

– Some of the computations involved: hyperbolic (arc) sine,

cosine, tangent, floating point reminder.cosine, tangent, floating point reminder.

• Analyzed 20 methods with SPF+CORAL

• Found undocumented pre-conditions

– Illegal arguments not properly caught in code

Apollo Lunar Autopilot

• Simulink model translated to Java

• Bounds

– max. time = 2h, max. path condition length = 50– max. time = 2h, max. path condition length = 50

CORAL

pan.cin.ufpe.br/coral

For more information visit

pan.cin.ufpe.br/coral

