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Context and Problem

• Context

– Symbolic execution (SE)

• Problem

Program analysis technique to 

generate test input data for 

achieving high path coverage.

• Problem

foo(int x) {
x = x + 1;
if (x > 10) {

// …
} else {

// …

foo( ?)
foo( ?)

// …
}

}
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Context and Problem

• Context

– Symbolic execution (SE)

• Problem• Problem

– Inability of solvers to deal with complex constraints 

foo(double x) {
x = x + 1;
if (x > Math.pow(Math.sin(x),2)){

// PC: $x + 1>($x + 1)^2
} else {

// PC: $x + 1<=($x + 1)^2
PC: $x + 1 > sin($x + 1)^2

undecidable or computationally 

complex solving
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}
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PC: $x + 1 <= sin($x + 1)^2



Context and Problem

• Context

– Symbolic execution (SE)

• Problem

Program analysis technique to 

generate test input data for 

achieving high path coverage.

• Problem

– Inability of solvers to deal with complex constraints 
Implemented in 

Symbolic PathFinder

(SPF) and used at NASA 

and Fujitsu.



Note about SPF

• Model-level interpretation of calls to math functions

sin$x + 1 sin($x + 1)

Symbolic expression denoting 

the result value of the callthe result value of the call



CORAL solvers

• Target applications: SE of programs 

that manipulate floating-point variables

– Use floating-point arithmetic– Use floating-point arithmetic

– Call specific math functions                    

(from java.lang.Math)
Common in software 

from NASA.

Solver
sqrt(exp(x+z))) < pow(z, x), 
x>0, y>1, z>1, y<x+2, 
w=x+2

{x=4.31,  y=6.08,  
z=9.51,  w=6.31}



Summary about CORAL

• Meta-heuristic solver

– Distance-based fitness function

• Optimizations• Optimizations

– Identification of dependent variables

– Inference of variable domains

– Efficient evaluation of constraints



Quick outlook on heuristic search

Input: sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

Solution: ?

4.81 1.00 1.00

4.81 1.00 2.19

2.91 20.2 9.99

Individuals

2
3

4

Individuals

4.31 6.08 9.51

-
-

- …

1.91 28.2 1.99

Identify best fit 

individuals

4 -

create new 

generations

stop after num. 

iterations or 

solution found



Particle swarm optimization (PSO)

• Similar to GA, but with fixed-sized population

– Search simulates movements in a group of animals

• Implemented very efficiently (matrix operations)• Implemented very efficiently (matrix operations)

• Parameters to calibrate local and global influence

• Used opt4j library (see opt4j.sourceforge.net)



Fitness Function

fconstraint
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Fitness Function

fconstraint

candidate input vector
4

Fitness value 

indicates quality of a 

solution.gi proportional to 

distance to the 

b1 and … and (bi1 or … or bim) and … and bn1.91 28.2 1.99
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distance to the 

clause i solution.

Adapted SAW [T. Back et al., 1998]



Fitness Function

fconstraint

candidate input vector
4

Fitness value 

indicates quality of a 

solution.Each clause i has 

an independent 

b1 and … and (bi1 or … or bim) and … and bn1.91 28.2 1.99

sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2

an independent 

weight.

Adapted SAW [T. Back et al., 1998]
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Evaluation

• Impact of search algorithm and optimization

• Effectiveness to solve…

– simple constraints– simple constraints

– complex constraints

• NASA case studies

– PISCES

– Apollo Lunar Autopilot



Impact of search and optimizations

• Comparison of 4 variations of CORAL

– {PSO,Random} x {optimized, non-optimized}

pso-opt pso random-opt random

pso-opt 74 88 257

pso 13 - 71 196

random-opt 3 47 - 180

random 0 0 8 -

Number of constraints that 

solver on row 4 solved and 

solver on column 3 did not solve
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Impact of search and optimizations

• Comparison of 4 variations of CORAL

– {PSO,Random} x {optimized, non-optimized}

pso-opt pso random-opt random

pso-opt 74 88 257

pso 13 - 71 196

random-opt 3 47 - 180

random 0 0 8 -

pso-opt performs better on average 



Effectiveness on simple constraints

• Constraints involving decidable theories

– Bounded-exhaustive testing of BST and Treemap

• Compared CORAL with Choco, CVC3, and Yices• Compared CORAL with Choco, CVC3, and Yices

CORAL could solve as many constraints as any other.



Effectiveness on complex constraints

• 78 manually-written test cases with math functions

• Compared CORAL with Choco

• CORAL solved 92.3% of the constraints (707/766)• CORAL solved 92.3% of the constraints (707/766)

For no query CHOCO could solve and CORAL could not.



PISCES

• PISCES library

– Some of the computations involved: hyperbolic (arc) sine, 

cosine, tangent, floating point reminder.cosine, tangent, floating point reminder.

• Analyzed 20 methods with SPF+CORAL

• Found undocumented pre-conditions

– Illegal arguments not properly caught in code



Apollo Lunar Autopilot

• Simulink model translated to Java

• Bounds

– max. time = 2h, max. path condition length = 50– max. time = 2h, max. path condition length = 50



CORAL

pan.cin.ufpe.br/coral

For more information visit

pan.cin.ufpe.br/coral


