CORAL: Solving Complex Constraints for Symbolic PathFinder

Matheus Souza, Mateus Borges, Marcelo d'Amorim*

Corina Pasareanu

Federal University of Pernambuco Recife-PE, Brazil

CMU SV/NASA Ames Research Center Moffet Field-CA, USA

* presenter

- Context
 - Symbolic execution (SE)
- Problem

Program analysis technique to generate test input data for achieving high path coverage.

foo(?) foo(?)

- Context
 - Symbolic execution (SE)

Problem

Program analysis technique to generate test input data for achieving high path coverage.

- Context
 - Symbolic execution (SE)

Problem

Program analysis technique to generate test input data for achieving high path coverage.

- Context
 - Symbolic execution (SE)
- Problem
 - Inability of solvers to deal with complex constraints

- Context
 - Symbolic execution (SE)
- Problem
 - Inability of solvers to deal witl

Program analysis technique to generate test input data for achieving high path coverage.

Implemented in Symbolic PathFinder (SPF) and used at NASA and Fujitsu.

Note about SPF

Model-level interpretation of calls to math functions

$$x + 1 \longrightarrow Sin \longrightarrow sin(x + 1)$$

Symbolic expression denoting the result value of the call

CORAL solvers

- **Target applications**: SE of programs that manipulate floating-point variables
 - Use floating-point arithmetic
 - Call specific math functions (from java.lang.Math)

Common in software from NASA.

$$sqrt(exp(x+z))) < pow(z, x), \implies Solver \implies \{x=4.31, y=6.08, x>0, y>1, z>1, y$$

Summary about CORAL

- Meta-heuristic solver
 - Distance-based fitness function
- Optimizations
 - Identification of dependent variables
 - Inference of variable domains
 - Efficient evaluation of constraints

Quick outlook on heuristic search

Input: sqrt(exp(x+z))) < pow(z, x) , x>0, y>1, z>1, y<x+2
Solution: ?</pre>

Particle swarm optimization (PSO)

- Similar to GA, but with fixed-sized population
 - Search simulates movements in a group of animals
 - Implemented very efficiently (matrix operations)
 - Parameters to calibrate local and global influence
- Used opt4j library (see <u>opt4j.sourceforge.net</u>)

$$f(\overrightarrow{x}) = \sum_{i} w_i * g_i(\overrightarrow{x})$$
$$g_i(\overrightarrow{x}) = \max_{1 < j < m} 1 - d(b_{ij}, \overrightarrow{x})$$

Adapted SAW [T. Back et al., 1998]

$$f(\overrightarrow{x}) = \sum_{i} w_{i} * g_{i}(\overrightarrow{x})$$
$$g_{i}(\overrightarrow{x}) = \max_{1 < j < m} 1 - d(b_{ij}, \overrightarrow{x})$$

Adapted SAW [T. Back et al., 1998]

$$f(\overrightarrow{x}) = \sum_{i} w_{i} * g_{i}(\overrightarrow{x})$$
$$g_{i}(\overrightarrow{x}) = \max_{1 < j < m} 1 - d(b_{ij}, \overrightarrow{x})$$

Adapted SAW [T. Back et al., 1998]

Evaluation

- Impact of search algorithm and optimization
- Effectiveness to solve...
 - simple constraints
 - complex constraints
- NASA case studies
 - PISCES
 - Apollo Lunar Autopilot

Impact of search and optimizations

Comparison of 4 variations of CORAL
 – {PSO,Random} x {optimized, non-optimized}

Impact of search and optimizations

Comparison of 4 variations of CORAL
 – {PSO,Random} x {optimized, non-optimized}

optimization pays off on average

Impact of search and optimizations

Comparison of 4 variations of CORAL
 – {PSO,Random} x {optimized, non-optimized}

pso-opt performs better on average

Effectiveness on simple constraints

- Constraints involving decidable theories
 - Bounded-exhaustive testing of BST and Treemap
- Compared CORAL with Choco, CVC3, and Yices

CORAL could solve as many constraints as any other.

Effectiveness on complex constraints

- 78 manually-written test cases with math functions
- Compared CORAL with Choco
- CORAL solved 92.3% of the constraints (707/766)

For no query CHOCO could solve and CORAL could not.

PISCES

- PISCES library
 - Some of the computations involved: hyperbolic (arc) sine, cosine, tangent, floating point reminder.
- Analyzed 20 methods with SPF+CORAL
- Found undocumented pre-conditions
 - Illegal arguments not properly caught in code

Apollo Lunar Autopilot

- Simulink model translated to Java
- Bounds
 - max. time = 2h, max. path condition length = 50

For more information visit

pan.cin.ufpe.br/coral